FinOps
Cost Management
Enterprise FinOps practices with automated cost allocation, reserved capacity optimization, and real-time budget alerts saving 38% on cloud spend.
$47.2K
Monthly Spend
38%
Savings Rate
72%
Reserved Coverage
94%
Budget Accuracy
Cost Breakdown
Monthly cloud infrastructure costs by service category with trend analysis.
Compute (EKS)
$18,450+2%
Database (RDS)
$9,200-5%
Storage (S3)
$4,850+8%
ML/AI (SageMaker)
$6,300+12%
Data Transfer
$3,100+3%
Other Services
$5,300-1%
Cost Trends
# cost_management/analytics.py
import boto3
from datetime import datetime, timedelta
from dataclasses import dataclass
from typing import List, Dict
@dataclass
class CostMetric:
date: str
service: str
amount: float
currency: str = "USD"
class CostAnalytics:
"""
AWS Cost Explorer integration for detailed
cost analytics and forecasting.
"""
def __init__(self):
self.ce = boto3.client('ce')
self.org = boto3.client('organizations')
def get_monthly_costs(
self,
months: int = 6,
granularity: str = "MONTHLY"
) -> List[Dict]:
"""Get cost breakdown by month."""
end_date = datetime.now()
start_date = end_date - timedelta(days=months * 30)
response = self.ce.get_cost_and_usage(
TimePeriod={
'Start': start_date.strftime('%Y-%m-%d'),
'End': end_date.strftime('%Y-%m-%d')
},
Granularity=granularity,
Metrics=['UnblendedCost', 'UsageQuantity'],
GroupBy=[
{'Type': 'DIMENSION', 'Key': 'SERVICE'}
]
)
return self._parse_cost_response(response)
def get_cost_forecast(
self,
days_ahead: int = 30
) -> Dict:
"""Forecast future costs based on trends."""
end_date = datetime.now() + timedelta(days=days_ahead)
response = self.ce.get_cost_forecast(
TimePeriod={
'Start': datetime.now().strftime('%Y-%m-%d'),
'End': end_date.strftime('%Y-%m-%d')
},
Metric='UNBLENDED_COST',
Granularity='MONTHLY',
PredictionIntervalLevel=80
)
return {
"forecast_amount": float(response['Total']['Amount']),
"lower_bound": float(response['ForecastResultsByTime'][0]['MeanValue']) * 0.9,
"upper_bound": float(response['ForecastResultsByTime'][0]['MeanValue']) * 1.1,
"confidence": 80
}
def get_cost_anomalies(
self,
threshold_percentage: float = 20
) -> List[Dict]:
"""Detect unusual cost spikes."""
response = self.ce.get_anomalies(
DateInterval={
'StartDate': (datetime.now() - timedelta(days=30)).strftime('%Y-%m-%d'),
'EndDate': datetime.now().strftime('%Y-%m-%d')
},
TotalImpact={
'NumericOperator': 'GREATER_THAN',
'StartValue': 100
}
)
anomalies = []
for anomaly in response.get('Anomalies', []):
impact = float(anomaly['Impact']['TotalImpact'])
anomalies.append({
"id": anomaly['AnomalyId'],
"date": anomaly['AnomalyStartDate'],
"service": anomaly['RootCauses'][0]['Service'] if anomaly['RootCauses'] else "Unknown",
"impact": impact,
"status": anomaly['AnomalyScore']['CurrentScore']
})
return anomalies6-Month Cost Trend
Jul
$62.4K
+8%Aug
$58.1K
-7%Sep
$54.3K
-6%Oct
$51.8K
-5%Nov
$49.2K
-5%Dec
$47.2K
-4%Total 6-month savings: $24,300 (32% reduction from July baseline)
FinOps Excellence
Every dollar optimized is a dollar reinvested in innovation.
38% Cost Reduction72% Reserved Coverage94% Budget Accuracy